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Abstract

The interface crack tip field between two dissimilar rubber materials those obey the Knowles—Sternberg (J. Elast. 3
(1973) 67-107) elastic law is analysed. The whole field composed of two shrinking sectors and one expanding sector.
Under tensile and shear mixed load the interface is always located in the expanding sector provided the hardening
exponents of the materials are equal. The completely analytical solutions are obtained for both shrinking and ex-
panding sectors. It is found that the important expanding sector was ignored by Herrmann’s (J. Elast. 21 (1989) 227-
269) solution so that the location of interface cannot be determined. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In plastic materials, the crack tip behavior is very sensitive to the material character. In rubber materials,
when large strain is considered, the crack tip fields possess similar feature for quite different elastic laws
given by Knowles—Sternberg (1973) and Gao (1990, 1997), i.e. the stress state is uniaxial tension. The
completely analytical solution to the crack tip field is given by Gao and Gao (1999) that is valid for all of
the three elastic laws mentioned above. Besides, the common feature of crack tip field is explained by Gao
and Gao (1999).

As for the interface crack, some problems must be treated individually for different materials. Analysed
by Gao and Shi (1995) is the rubber material that obeys the elastic law of Gao (1990). Analysed by
Herrmann (1992) is the material that obeys Knowles—Sternberg (1973) elastic law. Since the important
expanding sector was ignored by Herrmann (1989, 1992), a very long discussion was caused but the con-
dition to determine the location of interface was not given. Besides, some restrictions on material constants
given by Hermann (1989, 1992) are unreasonable ((4;/4,)"*" " = C,B,/C,B,). In the present paper, the
interface crack problem for Knowles—Sternberg’s elastic law will be analysed. A rapid transition zone in
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between the expanding sector and shrinking sector is found, that can ensure the continuity of displacements
and stress.

2. Basic equations

Consider a three dimensional elastic body. Before and after deformation, the position vectors of a
material point are denoted by P and Q respectively. The Lagrangian coordinates is denoted by
x' (i=1,2,3). Two sets of local triads are defined

oP 00
Pi — = > P — N 1
o 0 =7 (1)
Then, two invariants that will be used can be introduced
I=(P-P)Q-0Q), J=det|P' Qf (2)
in which P’ is the conjugate of P;, i.c. P'- P; = 4.
A strain energy per undeformed unit volume was proposed by Knowles—Sternberg (1973)
U= (A +BJ + CLJ?)" (3)
where 4, B, C and n are material constants. Form U the Cauchy stress can be obtained
10U
=—_— ; 4
=730, (4)
in which ® is the dyadic symbol.
Noting that
ol oJ
90 =2d 20 =J1 5
where
{dP’?"Q,-®Qj, Pi=P.P (6)
1=P P =030,
d is the Cauchy strain tensor, I is unit tensor. Then Egs. (3) and (4) give
2 _ B
6= 7” (Al +BJ +CLJ )" A+ CIDd+J (5 — IJ3> 1] (7)
The equilibrium equation is
. 0
' - == 0 8
If the base area forces are introduced
T'=Vye-Q 9)
where 1y = (0, 05, 05) (10)
the brackets denote mixed product of the three vectors. Then Eq. (8) can be rewritten as
oT’

ox' =0 (11)
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3. Division of sectors

Consider a semi-infinite interface crack between two dissimilar rubber materials as shown in Fig. 1(a).
Under the action of tensile and shear mixed load, it deformed as shown in Fig. 1(b). Two cylindrical
Lagrangian coordinate are taken such that (R, ®,Z) refers to undeformed state, while (r,0,z) refers to
deformed state, as shown in Fig. 1. The problem is treated as plane strain case, and z coordinate is along the
crack front. Then z = Z, so only the mapping from R, ® to r, 0 is considered.

Since the strain near the crack tip is tremendous large, the deformation cannot be described by an
uniform mapping function. The whole crack tip field is divided into two shrinking sectors SH, SH’ and one
expanding sector EX as shown in Fig. 1. Before loading the sectors SH and SH’ almost occupy the whole
field but after loading they become very narrow. Oppositely, before loading the sector EX is very narrow at
the vicinity of the interface but after loading it occupies almost the whole field. In sectors EX and SH (or
SH’) the mapping function will take different forms.

Actually there is no strict boundary between different sectors. The division of sectors only due to their
characters of deformations.

4. Expanding sector

The EX sector contains two different material domains for which every quantity will be denoted by a
subscript number 1 or 2 in necessary case, but in general case the subscript will be omitted. In this sector the
mapping function is assumed as

r=R"p(&), &E=6OR™
{9 — o(®) (12)

where o, 8, are positive exponents to be determined. |@] < @y, O, is a very small positive number. The
physical meaning of Eq. (12) is that the angle @ is expanded tremendously while R is shrinked tremen-
dously. Let e,, e, denote the unit vectors of r, 0 system, i.e.

o0 _1og
or’ T 00

then according to Egs. (1), (12) and (13) it follows

=0, = =10, (13)

| SH
. (R,©)
...:::15//I *
e lus
..".": .‘," \\\
2> sw v

(@) (b)

Fig. 1. Interface crack tip: (a) before loading, (b) after loading.
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0 =2 =RI(1+ B)pe,

{ 0. = %g R"“P(ple, + parey) (14)
Noting that

Pr=ey=P;, P =R '"e9g=R>¥P; (15)
where ez, eg are the unit vectors in R, @ system. Then from Egs. (6), (14) and (15), it follows

d =RP . @ e, + p*w’ey @ ey + pp'a (e, @ ey + ey @ e,)] + O(R™) (16)
According to Egs. (2), (14) and (15) it follows

] = R2/J—2c<u(é) + O(RZ,{)
{J :RZ/?fZav(é) (17)
where
u= p +p2w/2
ZhTh (%)

Since o > 0, evidently from Eq. (17) that 7 > J. Further assume that o > 2§, then J > 1. There Eq. (7) is
reduced to

ZJn(AI)” I[Ad—i—J(g—CIJ )1} (19)

For the time being we assume that / ~ J3 then from Eq. (17) it follows
o=4p (20)
Using Egs. (16)—(20), it follows

6 = 2nA"R~C V=171 %, @ e, 4 p*aey ® e + pp' o (e, @ ey + ey D e,)
+ R*vY (e, ® e, + ey ® ey)] (21)
in which
B C
r= (ZA‘A”” ) (22)

In Eq. (21) the terms with R* are reserved but the terms with R** are neglected. From Egs. (14) and (10) it
follows

0" = R P (poe, — pley)
{ Qi — R—ﬁflv—l(l + [f)pe: (23)
Vo = Ry (24)
Egs. (9) and (21)-(24) give

R _ npl—(2n—1)(a— [3)+o/. n—1 'y o
{T 2nA"R u 'Y (pa'e. — p'ey) (25)

T¢ = 2nA"R- =Dyt ple. + pa'ey + R*(1 + B)pYey)

Noting that
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Oe, __ Oey 0

OR — OR

de, __ w/e deg __ —w'e (26)
E 0y e r

Substituting Egs. (25), (26) into Eq. (11), it follows

(n—1)Lp" +p" — pa® — R2(n— 1) (e — p)Ype) =0 (27)
(n=1)%paf + po” +2p'ef + R2(n — 1)(a = F)Yp' + R*(1+ )pl(n — 1) LY —§ (ur™)] =0

Eq. (27) can give

1\ , u C, 5.
—= R* —-1)—Y—— = 2
(n 2>u+ v{(n )u A(uv )] 0 (28)
Only taking the dominant terms, Eq. (28) can be reduced to
u 6R* Cv  6R* C (" 20
W T idv 14 (5 7) (29)
Eq. (29) indicates that ' ~ R*, then the second of Eq. (27) gives
p" +2p'w ~ R* (30)
Egs. (29) and (30) are combined to give
u' ~ R* (31)
then Eq. (27) is reduced to
0" — pa* —R2(n— 1) (e — B)paY =0 (32)
po” + 20’0 + R2(n—1)(a— p)p'Y =0
When the terms with R* are neglected, Eq. (32) becomes
" 2
p’—pw= =0
{w”+2p—'w'=0 (33)
P

The solution to Eq. (33) is

p = poll + K€+ &)
{ o= cgo + arctan[k (¢ 4 &))] (34)

in which p, wy, &, and k are constants. The general form of solution (34) is valid for both material 1 (@ > 0)
and material 2 (@ > 0).
It can be seen latter that the approximate Eq. (33) is acceptable except when & — +oo.

5. Connecting conditions on interface

Shown in Fig. 2 is the crack tip domain. In this paper only the case of n; = n, is considered. It is assumed
that the interface is located in the expanding sector.
The solution (34) for material 1 and 2 are written as

{.01 = proll + K&+ &19))"? (35)
) = wyg + arctanfk (E+ &yp)], €>0
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1 sh . interface
EX

Fig. 2. The crack tip domain.

{ Py = paoll +k3(E+ 520)2]1/2
Wy = Wy + arctanfkr(E+ )], €<0

at ¢ = 0, the continuity conditions for displacement and stress must be met

{ p1(0) = p2(0),  @1(0) = @(0)
T3(0) = T5(0)

From Egs. (35)—(37) and (25), for the dominant terms, it follows

Proll "‘k]zé?o}]/z = pyll + kgégo]l/z
o + arctan(k; &g) = wy + arctan(k,Ey)
AY(”Tlp/l)gzo = Ag(“gflp,z)zzo

AY(”T_lplwi)gzo :Ag(”g_lmw,z)cfzo

Egs. (40) and (41) give

(o).~ (%)
1/ o @y /) o

Egs. (35), (36), (42) and the first of Eq. (37) give
ki&ip = kalyg = h

where 4 is a free constant.
Eqgs. (35), (36), (43) and the first two of Eq. (37) give

P10 = P20 = Po; W1o = W20 = Wo

po and oy are free constants.
Nothing that

{ u=Rp,  v=_(1+pke}
o =pikp2,  p' =PI+ Eo)p!

substituting Eqs. (43)-(45) into Eq. (41), it follows
ky = kAYP Y = kay, k= kA = kay

in which k is a free constant.

(45)

(46)



Y.C. Gao, L. M. Zhou | International Journal of Solids and Structures 38 (2001) 6227-6240 6233
Using Eqs. (43), (44) and (46), Egs. (35) and (36) can be rewritten as

o1 = poll + (arké + h))"? (47)
) = wy + arctan(a k¢ + h)

0y = poll + (aské + h)*)"? (48)
W, = wy + arctan(axké + h)

Egs. (47) and (48) meet all of the continuity conditions on the interface, and there are four free constants,
Po» @0, k, h. The physical meaning of the constants should be discussed. Evidently p, can indicate the
amplitude of the field. When ¢ — 400, o — g + /2, so @y indicate the location of the normal line of the
crack surface just at the tip, as shown in Fig. 2. Further let

h = tan0, (49)
then at £ =10
W] = Wy = wy + 00 (50)

Eq. (50) shows that 0 is the angle from the normal line (at crack tip) to the interface. We can presume that
0y will depend on the ratio of tensile and shear loads. Although the load ratio cannot be determined by the
asymptotic solution nevertheless the ratio of tensile and shear stresses on the interface in the near field can
be related with 6,. From the second of Eq. (25) we found that

/

_ p
[ o

o

=kéy =h = tanf, (51)

0
o £=0

so, indeed 6, indicates the load ratio.
Finally we consider k (= ki/a; = ky/a,). Eq. (41) only ensures the continuity of ¢*’ for the dominant
term, according to Eq. (25), when the term with R* is considered, the continuity condition of ¢/ requires

[A;’”TIYIM:O = [AZM?IYZ]:j:o (52)
Eqgs. (22), (45), (46) and (52) give

00" (53)

1 B, C k! 1 B, G, k!
24y a4 (14 p)

| — ——p74 = —
a; | 24, a14; (1+ﬁ)3 0 ar

It seems that k can be determined by Eq. (53) when 4,C?"~! # 4,C3"~'. On the other hand, there is no
reason to give this restriction on material constants. Therefore the constant k remains an open question.

6. Shrinking sector

The solution (35) and (36) when & — 400 become invalid because p — oo. Then the mapping function
should be considered in the shrinking sectors SH or SH’. For simplicity only sector SH is analysed. The
mapping functions are assumed as

r=R"p(@), 0=0 —RY(O) (54)

where 0 and 7y are positive exponents, 0” is a constant.
The physical meaning of Eq. (54) is that the angle @ is shrinked tremendously while the length of R is
extended tremendously.
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According to Egs. (1) and (54) it follows

Op = 5 = R0[(1 = d)e, — 7R ey) (55)
Qo =B =R"(gle, ~ Kigy'ey)
then
{ O =R7g (—¢p'e, — Ry ey) (56)
0° = R77'q ' o[(1 = d)e, + YR ey)
where ¢ = ¢[ye"y — (1 - 0)py/] (57)
According to Egs. (2) and (55), and nothing that P = ez, Po = R ep, it follows
I=RYp, J=R"%g (58)
in which
p=0"+ (-0 ¢ (59)
Besides, from Egs. (10) and (55)
Vp = R1T1%g (60)

For the time being it is assumed that /7 > J, J > 1, then expression (19) is still valid. From Egs. (9), (19)
and (6) it follows that

{ TF = 2n4"J "Wl [Qp + J (& — S1U) Q) (61)
T® =2n4"J Wol" '[R2Qq + J (£ — S1773)0°]
Eqgs. (58)—(61) can give
Tp=2nd" R"Cr00pYo[(1 = d)e, — pR"eo] — (37— $pg *R¥)(@'ey + R'py/e,)} 62)
T° =2n4" R CDp~Hole, — )R py'eg + (£ — Gpg "R @[(1 — d)ey + yR'e,]}

In order to simplify Eq. (62), the boundary condition at the crack surface ® = n should be considered. The
traction free condition is

T4, =0 (63)
Egs. (62) and (63) are combined to give
¢'(m) =0 (64)
B
<_ _ Cpq3R4(33y> — 0 (65)
2 O=n
Eq. (65) requires that
4
) = 75
) =3 (66)
1/3
q=<%p> at®@ =n (67)
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B C

G= VIR qu (68)

then Eq. (62) is reduced to

TR — 2nAnR\-(2n— 1)5 n— 1[(1 _ 5)@& (p/Geg] (69)
T° = 2n4"R--1) 5p” Heo'e, + (1 — 8)pGey]
Substituting Eq. (69) into Eq. (11), it follows
"+ (n—1)¢ > +(1=90)[1-02n—-1)dlp=0 (70)
(1 - 8)pG + (1 —8)(n— 1)¢G%+2(n—1)5(p’G:0 (71)
Eqgs. (70) and (71) can be reduced to
0" + (1= 8 @][1+2(n = Dg"p '] = 2(n — 1)5(1 = 8)p = 0 (72)
G p’ 26 ¢
G0 - =0 (73)
The solution of Eq. (73) is
G = G()(pQDZ&/(l_d))VHI (74)

where Gj is a constant. Since p, ¢ > 0, Eq. (68) and the boundary condition (65) require G, = 0, then G = 0,
and Eq. (68) gives

q= (2—Cp) " (75)

Besides Eqgs. (64), in order to connect with the EX sector, the following condition is needed
¢(0) =0 (76)

The nonlinear eigenvalue problem of Eq. (72) under conditions (64) and (76) can be solved analytically
(Gao and Gao, 1999)

@ (Q— cos®)'’[Q + (1 _%)COS@]I/Z—&
=[1-(1-1Ysin*@]'""? -

1
2n

0 S

where ¢* is a constant.
The solution of Eq. (75) is

12\ T .
v = 1_5( ) /0 a)[/@ o~210-0 5135 4y (78)

where " is a free parameter.
The solution for the material 2 (@ < 0) can be similarly obtained.



6236 Y.C. Gao, L.M. Zhou | International Journal of Solids and Structures 38 (2001) 6227-6240

7. Transition from sector EX to SH or SH’

The completely analytical solutions are obtained for sector EX and SH or SH’ respectively. However,
there are no strict boundaries between EX and SH or SH'. Therefore the transition from one sector to
another must be discussed. For briefness, only the transition between EX and SH is considered in details.

Firstly, we try to use the simple solution (34) to express the asymptotic behavior of p and w when
¢ — +o0, then

{ p = pok& 1 (79)

w=w)+3—1z, ¢—+00

Substituting Eq. (79) into Eq. (12), it follows

_ plip-a
{g:io+§ngg$’ 0 -0 (80)
On the other hand, for sector SH, when & — 0, Eq. (77) gives
¢ =C,0 (81)
where
Co="0"°12(1=0)]"" = p(m)o°(1 = 6)"" (82)
Egs. (81) and (78) give
Y =C,0 (83)
where
- (5) (1)
Substituting Eqgs. (81) and (83) into Eq. (54), it follows
_ pl-s
{;;5* —Czt@q)%@*l, 6 —0 85)
Egs. (80) and (85) should give the some mapping from R, © to r, 0, therefore it is required
a=y, p=y-9 (86)
wy= 0" —g (87)
k=2 p=0CyC, (88)
Cy
Egs. (86), (66) and (20) are consistent.
Eqgs. (88) and (84) are combined to get
3
kpﬁ(l—i-g) :2FC (89)

Particularly for material 1, Eq. (89) is written as
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0\’ 2c
4 v _ =1
klpo(l + 3> B, (90)
Similarly, for material 2, it is
s\’ 2c
4 v _ =2
k2p0(1 +3> B, (91)
Egs. (90) and (91) can give
ky  CiB,
M 2
ky  GBy ®2)
Noting Egs. (46) and (92), it follows
12 n/(2n—1) B CIBZ (93)
A eyl

this is the same condition forced by Herrmann (1989) but from different point of view.
However, Eq. (93) should not be a precondition for existence of the solution. The source of the con-
tradiction will be discussed in next paragraph.

8. The role of terms with R* in Eq. (32)

Now, we consider the simplifying procedure from Egs. (32) and (33). Under consideration is the case of
R < 1, so it is reasonable to neglect the terms with R* in Eq. (32). However, at some particular points, for
example ¢ — +oo, the terms with R* may play an important role. In order to show it clearly, the new
variable { is introduced

{ = arctané (94)
then Eq. (32) is written as

p—2tanlp — par* — c§:2§(1 —Dpoy =0 05
&~ 2tanlo + 226 + L (1 - 1)Ly =0 ©3)
in which
d
N9 6
0=30) (96)
B C
y =2 S hi3cos?
54~ U0 cos ¢ (97)
it = 7+ pir’ (98)
o= (1+p)p'o (99)

From Eq. (95) it can be seen that when { — +7n/2(¢ — +o00) the tails of Eq. (95) with R* will become
important. Therefore Eq. (33) can only be used for the interval |{| < (n/2) — A(, the value of A{ depends on
R*. When { — +n/2(¢ — +00), the solution (34) cannot describe the real behavior of p and @. Analysis of
Eq. (95) concludes that for a given value of R*, when { — +m/2, the only possiblity is
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{p@@—m>1 (100)
w=C,
and

Y —0 (101)
Further, Egs. (98) and (99) become

i=C—1)

102

{ﬁ=u+qu@—mﬁ (102
Egs. (97), (101) and (102) give

3Ct = _< (103)

B+

The asymptotic behavior of Eq. (101) is independent of the initial value of p and ' at { = 0. Eq. (101) is
also verified by numerical calculation of Eq. (95) for different value of R*. The curves of Y are calculated for
n=2,4=B=C,p(0) =1 and various R*. For '(0) = 1 and '(0) = 2 the curves are plotted in Figs. 3, 4
respectively. Finally, using Eq. (94), Eq. (100) can be written as

= C E
{CPU/ = éﬂ*z & — Foo (104)

0.124

D TP,
-

0.104

0.08 1

0.061 ——R%=01
Y - - —R=0.01
0.04
-+ R°=0.001

0.02 4

0.004

02 00 02 04 06 08 10 12 1.4 16

¢
Fig. 3. The curves of Y for «'(0) = 1.

0.004
-0.044
-0.084

0.12-
Y -0.164
0.20-
0.24+

-0.284

T T T T T T T T T
02 00 02 04 06 08 10 12 14 16

¢
Fig. 4. The curves of Y for «'(0) = 2.
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The asymptotic expression (104) is similar to Eq. (79), but generally C, # pok, C,, # k~'. This transition
mainly happens in the zone |{| ~ n/2 — R*?. From Egs. (104) and (12), it follows

r=R"C,|0]
{szoing“Cw@‘l7 0 —0 (105)
Comparing Eqgs. (85) and (105), we can obtain Egs. (86) and (87) but Eq. (88) is replaced by
Cy=0C,, Cy=0C, (106)

Although C4 and Cy are related by Eq. (84), nevertheless when C, and C, are given, Eq. (106) can be
satisfied, because C, and C,, are similarly related by Eq. (103). Therefore through the rapid transition zone,
the asymptotic behavior of Eq. (80) is replaced by Eq. (105), then condition (93) is released. With the help
of the minor terms of Eq. (32), the obstacle of linking different sectors is overcome.

It should be noted that for a crack in uniform material, the value of k can be taken such that ¥ (0) = 0,
then the rapid transition zone disappeared. Only for the interface crack the rapid transition zone is needed.

It should be noted that when (1/2) — |¢| > R*/?, the solution (47) and (48) are valid, so the stress state is
uniaxial tension.

9. Comparison with results of Gao and Shi (1995)

Analysed in Gao and Shi (1995) is also an interface crack tip, but the elastic law was proposed by Gao
(1990).

U=alJ»" +bJ?—1)"J> (107)

In sector SH or SH’ it was obtained that

Na 3/2(35+N)
— — — — 1
q <3sbp > , S=m—t (108)

Eq. (108) is similar to relation (75).
In sector EX, the equation of Gao and Shi (1995) is

p" = pa”? — f(u,v,p?)¥* =0 109
a)”+2%w’—g(u,v,p’2)Y* -0 ( )
in which
3sb
Y =1— %023+(2/3)Nu7N (110)

fand g are functions u, v, p”?. The terms with Y* in Eq. (109) are similar to the tails in Eq. (32) but without
the factor R*. Therefore they were not neglected in the analysis of Gao and Shi (1995).
For a crack in uniform material, Y* can simply be taken to be zero, then

Na )20
=(— 111
0 ( 35 ) (1)

Therefore the tails of Eq. (109) are cut off, and the analytical solution can be given by Eq. (34). The
condition (111) can be satisfied if
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_(3s Na\** _ o
(14 5) (3+N)< ) p0(6 N)

k= —
3sb

] 1/(35—2N)
(112)

Eqgs. (108) and (111) can ensure the reasonable connection of sector EX with SH or SH'. Therefore, for the
crack in uniform material, the crack tip is in uniaxial tension state.

For an interface crack, the tails of Eq. (109) cannot be simply cut off. With the help of the tails, when
& — +o0, Y* will tend to zero automatically so that Eq. (111) is satisfied. So, the role of the terms with Y* in
Eq. (109) is similar with Y in Eq. (32). For an interface crack, generally, the stress state at crack tip is not in
uniaxial tension.

10. Conclusions

(1) The interface crack tip field, for K-S elastic law when n; = n,, is composed of two shrinking sectors
and one expanding sector. The interface is located in expanding sector.

(2) For shrinking sectors the analytical solution is obtained both for ¢ and . For expanding sector in
the main domain, i.e. |¢]| <€ R, the analytical solution is valid. But there is a rapid transition zone at
|é| ~ R~/2, where the minor terms R* in Eq. (32) must be considered. With the help of the tails of Eq. (32),
the transition from sector SH to EX and from EX to SH’ can be performed, i.e. the displacements and stress
are continuous.

(3) Although the minor terms with R* play an important role, the stress state near the interface crack tip
is still in uniaxial tension. This result is different from that obtained by Gao and Shi (1995) for another
elastic law.

(4) In the works of Herrmann (1989, 1992) the important expanding sector was ignored so that some
very long analysis are caused. Besides, the restriction on the material constants is not necessary.

(5) For the interface crack tip field under mixed load, the asymptotic solution mainly contains three free
parameters. p, indicate the amplitude of the field. w, represents the orientation of the field. 0, is related with
load ratio. Although Eq. (53) provides a condition to determine the value of &, but this is uncertain. So, the
determination of constant £ may need an additional condition that cannot be given by the asymptotic
solution, see Gao and Gao (1999).

(6) When large strain is considered, the oscillatory singularity disappeared.

(7) The approach used in this paper is limited in the case of ny =n, =n.
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